Press Release - New Electronics Strategy: what's in it for the economy?
How will SMEs benefit from this strategy?
SMEs play a key role in emerging areas like plastic and organic electronics, smart integrated systems and in general in the field of design. Some of the markets they serve are currently niche but with double digit growth rates.
One of the main aims of the strategy is to better integrate SMEs in value chains, and provide them with premium access to state-of-the-art technologies and R&D facilities. Support to embed micro- and nano-electronics in all types of products and services will be essential to spur innovation across the economy including non-technology SMEs.
EU-wide partnerships between end-user industries, public authorities and suppliers (large and small) of micro- and nano-electronics will help open up new high growth areas like electric vehicles, energy-efficient buildings and smart cities and all types of mobile web services. For public sector markets, public procurement of innovations will facilitate market development.
Can Europe really remain/become a world player?
Europe has considerable assets in micro- and nano-electronics, among them an excellent academic research community and industrial leadership markets such as electronics for automotives (around 50% of global production), for energy application (around 40%), for industrial automation (around 35%), while it is also strong in designing electronics for mobile communications.
European companies are also very strong in the areas of semiconductor manufacturing equipment and materials supply.
European companies, including a large number of SMEs, are world leaders in smart micro-systems like health implants and sensing technologies. Although these currently represent niche markets, they are areas of high growth (above 12% per year).
Building on these strengths and mobilising the resources needed should make Europe a major player in micro- and nano-electronics. Mobilising resources will need close coordination of actions at regional, national and European level. This will build confidence and stimulate the renewal and growth of manufacturing capability in Europe. Public investment in R&D and policies to attract private investment remains highly fragmented across the EU despite the progress made in the last five years. Considering that European R&D in micro and nano-electronics is world-class and attractive to international players, bringing together resources and coordinating activity in the field could bring even better results.
How can this be achieved? Firstly, by putting emphasis on reinforcing and building on the excellence of research and technology organisations (RTOs) in terms of facilities and staff. They should be the "place to be" for talented engineers and researchers in the field, at the centre of ecosystems to attract private investments in manufacturing and design. Secondly, further progress towards complementary specialisation and stronger cooperation between the main RTOs will be a key for success, maximising return on investment and ensuring excellence. Thirdly, the strategy aims to ensure the further uptake of electronics in all industrial sectors, while close cross-border and cross-sector collaborations (including with end-user) industries will be reinforced to exploit the benefits of cross-disciplinary work.
Have the two Joint Technology Initiatives ENIAC and ARTEMIS failed? Why are they replaced?
Not at all - independent evaluations of both Joint Technology Initiatives (JTIs) on embedded computing systems (ARTEMIS) and on nano-electronics (ENIAC) acknowledged the value of the JTI's and recommended a continuation - albeit with a number of simplifications.
In the period 2008-2011, the two JTIs supported a total of 84 projects (44 for ARTEMIS JU and 40 for ENIAC JU).
ENIAC defined and implemented a Research Agenda strengthening the relevant areas in which Europe improved its competitiveness by directing funding to the priority subjects. It is thus far the only mechanism that engaged in concretely implementing the recommendations of the High-Level Group on Key Enabling Technologies of 2011. It introduced a new quality of collaboration between the stakeholders that resulted in remarkable progress and provides a solid basis for the future strategic perspectives.
ARTEMIS has achieved its high-level goals of reducing fragmentation by enlarging the typical project 'footprint' at a European level. "Centres of Innovation Excellence" (CoIE) - a formalization of the "Self-sustaining Innovation Ecosystem" concept - were created notably on safety-critical (electronic) engineering, on process automation and on energy-efficiency in intelligent buildings.
For both JTIs, the first projects approaching completion demonstrated significant advances of the state of the art strengthening the global competitive position of the European industry. Furthermore the participation rate of SMEs is high (above 35% for both) showing the effectiveness of both programmes to engage smaller actors and raise innovation in Europe.
The two JTI's were set up in the context of Framework Programme 7 and to allow new investments a new initiative in HORIZON 2020 is needed. The new JTI will build on lessons learnt from the current ones and provide a simplified funding structure.
The implementation of the future Joint Technology Initiative through a single tripartite public private partnership will happen on a legal basis that will better take into account its specificities in line with the Horizon 2020 proposal.
The scope of the programme will cover the areas of the current ENIAC and ARTEMIS JTIs with a bridging by part of the activities of the current EPoSS European Technology Platform. At the same time, in order to better address the issues of transforming R&D into marketable products, the JTI will cover the Technology Readiness Levels of 2 to 8 (over a scale of 9). While continuing to fund research, this broadening of project types will allow strategic projects to be supported for implementing research and innovation, such as pilot lines and demonstration projects.